Characterization of magnetically oriented phospholipid micelles for measurement of dipolar couplings in macromolecules.

نویسندگان

  • M Ottiger
  • A Bax
چکیده

Weak alignment of solute molecules with the magnetic field can be achieved in a dilute liquid crystalline medium, consisting of an aqueous mixture of dimyristoyl-phosphatidylcholine (DMPC) and dihexanoyl-phosphatidylcholine (DHPC). For a certain range of molar ratios, DMPC and DHPC can form large, disc-shaped particles, commonly referred to as bicelles (Sanders and Schwonek, 1992), which cooperatively align in the magnetic field and induce a small degree of alignment on asymmetrically shaped solute molecules. As a result, dipolar couplings between pairs of 1H, 13C or 15N nuclei are no longer averaged to zero by rotational diffusion and they can be readily measured, providing valuable structural information. The stability of these liquid crystals and the degree of alignment of the solute molecules depend strongly on experimental variables such as the DMPC:DHPC ratio and concentration, the preparation protocol of the DMPC/DHPC mixtures, as well as salt, temperature, and pH. The lower temperature limit for which the liquid crystalline phase is stable can be reduced to 20 degrees C by using a ternary mixture of DHPC, DMPC, and 1-myristoyl-2-myristoleoyl-sn-glycero-3-phosphocholine, or a binary mixture of DHPC and ditridecanoyl-phosphatidylcholine. These issues are discussed, with an emphasis on the use of the medium for obtaining weak alignment of biological macromolecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium.

In isotropic solution, internuclear dipolar couplings average to zero as a result of rotational diffusion. By dissolving macromolecules in a dilute aqueous nematic discotic liquid-crystalline medium containing widely spaced magnetically oriented particles, a tunable degree of solute alignment with the magnetic field can be created while retaining the high resolution and sensitivity of the regul...

متن کامل

Measurement of long-range 1H-1H dipolar couplings in weakly aligned proteins.

Measurement of 1H-1H dipolar couplings in macromolecules, weakly oriented by a dilute liquid crystalline medium, is generally limited to the largest such interactions. By removing dipolar couplings to nearest neighbors, either by decoupling, deuteration, or both, more remote interactions become accessible. The approach is demonstrated for measurement of amide-amide interactions in the proteins ...

متن کامل

Measurement of dipolar couplings for methylene and methyl sites in weakly oriented macromolecules and their use in structure determination.

A simple and effective method is described for simultaneously measuring dipolar couplings for methine, methylene, and methyl groups in weakly oriented macromolecules. The method is a J-modulated 3D version of the well-known [1H-13C] CT-HSQC experiment, from which the J and dipolar information are most accurately extracted by using time-domain fitting in the third, constant-time dimension. For C...

متن کامل

Line narrowing in spectra of proteins dissolved in a dilute liquid crystalline phase by band-selective adiabatic decoupling: application to 1HN-15N residual dipolar coupling measurements.

Residual heteronuclear dipolar couplings obtained from partially oriented protein samples can provide unique NMR constraints for protein structure determination. However, partial orientation of protein samples also causes severe 1H line broadening resulting from residual 1H-1H dipolar couplings. In this communication we show that band-selective 1H homonuclear decoupling during data acquisition ...

متن کامل

Magic-angle-spinning NMR techniques for measuring long-range distances in biological macromolecules.

The determination of molecular structures using solid-state NMR spectroscopy requires distance measurement through nuclear-spin dipole-dipole couplings. However, most dipole-coupling techniques compete with the transverse (T2) relaxation of the nuclear spins, whose time constants are at most several tens of milliseconds, which limits the ability to measure weak dipolar couplings or long distanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomolecular NMR

دوره 12 3  شماره 

صفحات  -

تاریخ انتشار 1998